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A Comparison of De-noising Techniques for FIRST Images 
Imola K.  Fodor arid Chandrika Karriath 

Abs tTor t -  
Data obtained through scientific observations are often con- 

taminated by noise and artifacts from various sources. As a 
result, a flrst step in mining these data is to isolate the sig- 
nal of interest by minimizing the effects of the contaminations. 
Once the data has been cleaned or de-noised, data mining can 
proceed as usual. In this paper, we describe our work in de- 
noising astronomical images from the Faint Images of the Ra- 
dio Sky at Twenty-Centimeters (FIRST) survey. We are mining 
this survey to detect radio-emitting galaxies with a bent-double 
morphology. This task is made dimcult by the noise in the im- 
ages caused by the processing of the sensor data. We compare 
three different approaches to de-noising: thresholding of wavelet 
coefficients advocated in the statistical community, traditional 
Altering methods used in the image processing community, and 
a simple thresholding scheme proposed by FIRST astronomers. 
While each approach has its merits and pitfalls, we found that for 
our purpose, the simple thresholding scheme worked relatively 
well for the FIRST dataset. 

I .  IN7’RODIJCX”ON 

In the last few decades, there has been an explosion in the 
amount of scientific data generated through observations, exper- 
iments, and simulatioiis. To effectively and efficiently explore 
these large, multi-dinleilsional datasets, scientists are increas- 
ingly turning to data rnining techniques. 

Sapphire [I] is a project in large-scale data mining a t  the 
Center for Applied Scientific Computing at Lawrence Liver- 
more National Laboratory. As shown in Fig. 1, we view data 
mining as an iterative and interactive process involving data 
pre-processing, search for patterns, knowledge evaluation, and 
possible refinement of the process based on input from domain 
experts or feedback from one of the steps. For scientific data, 
extensive pre-processing is often needed prior to the recogni- 
tion of patterns. Depending 0x1 the domain arid the problem, 
this may involve several steps. In the case of data obtained 
through observations or experiments, one of these steps may be 
the reduction of noise that typically contaminat,es the observed 
signal 

Removing noise from an observed signal is an active research 
area, with extensive work done by both the statistics and image 
processing communities [2], [3], [4], [5]. While noise in image 
data is visually unappealing, it can also have a detrimental ef- 
fect as important features may become unrecognizable, result- 
ing in poor quality of any subsequent processing. There are 
many sources of noise in images, such as dust ou the optics, 
the effects of the camera’s sensors axid associated electronics, 
stray photons; electromagnetic interference, and postprocessing 
of the data collected by the sensors. 

Noise in images is frequently modeled as Gaussian or Poisson 
noise if the noise is due  to the seiisors; or salt and pepper noise 
if it is due t,o defective pixels or dust particles. Thc noise caii be 
either additive or rnultiplicativc arid is ofteu consitlcred to be 
mi-correlated t,o the signal. If the type of noise i i i  an iinage is 
known, it becoines iniicli easier to select an appropriatci method 

to reduce the noise. However, as we describe in this paper, 
modeliiig the noise may be lion-trivial in some cases. 

As part of the Sapphire project, we are working with a vari- 
ety of data sets, which are coritaiiiiriatetf with different types of 
noise. To remove the noise from these data sets, we have imple- 
mented a comprehensive set, of (le-noising techniques based on 
spatial filters and wavelet t,hresholding techniques. In this pa- 
per, we compare and contrast the effectiveness of these methods 
on one of our test-bed applicat,ions, namely; the Faint Images 
of the Radio Sky at Tweiity-Ceiitiiiieters (FIRST) astronomi- 
cal survey. We are analyzing. this data set to help astronomers 
identify radio-emitting galaxies with a bent-double morphology. 
Unt,il recently, FIRST astronomers identified such galaxies by 
visually inspecting the radio images. In addition to being sub- 
jective, this manual analysis is hecoming infeasible as the survey 
has grown iri size. Our goal is to replace this visual inspection 
by a semi-automated approach from data mining. In a previ- 
ous publication [6],  we reported on the success of our initial 
approach. In this paper; we describe the work we have done in 
de-noising the images to improve the accuracy of the features 
extracted. 

This paper is organized as follows: Section 11 introduces the 
FIRST survey! describes the noise in the images, and illustrates 
why the presence of noise make data mining difficult. In Sec- 
tion 111, we provide a brief description of the three denoising 
techniques considered, namely, wavelet thresholding, spatial fil- 
ters, arid simple thresholding. In Section IV we- discuss our 
experiences with applying these techniques to the FIRST data. 
Finally, Section V concludes with a summary of our findings 
and proposed future work. 

11. THE FIRST SURVEY 
The FIRST survey [7] was started in 1993 with the goal of 

producing the radio equivalent of the Palomar Observatory Sky 
Survey. When complete, FIRST will cover over 10,000 square 
degrees of the sky, to a flux density limit of 1.0 mJy (milli- 
Jansky). Csing NRAO’s Very Large Array (VLA), FIRST ob- 
servations through 1999 have covered about 8,000 square de- 
grees, producing more than 32,000 two-rnillion pixel images. At 
a threshold of lmJy, there are approximately 90 radio-emitting 
galaxies, or radio sources, in a typical square degree. 

Radio sources exhibit a wide range of morphological types 
that provide clues to the source class, emission mechanism; and 
properties of the surrounding medium. Of particular interest 
are sources with a bent-double morphology as they are tracers 
of large clusters of galaxies. Identifying bent-doubles is a par- 
ticularly challenging task, because of the wide variety of mor- 
phologies irivolved. I11 the early st,ages of the survey, FIRST 
scientists visually inspected sub-irnages of the survey to identify 
bent-double galaxies. We now use this set, along with several 
non-bent doubles, as a training set for data mining. 

The (lata from FIRST. both raw arid post-processed, are a(:- 
cessible via a user-friendly interface a t  the FIR.ST website [8]. 
There are two forms of data available for use ~ image maps and 
a catalog. In Fig. 2,  we show an image  nap containing examples 
of two bent-doubles. Each inap covers an area approximately 
0.45 square degrees, with pixels that are 1.8 arc seconds wide. 
These large image maps! obtained froin processing the raw data 
froin the 27 telescopes of the VLA, are inostly background noise 
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Fig. I .  Data minirig: an iterative aiid intcractivr process 

that appears as streaks in the images. These streaks, at various 
angles and thicknesses. can be seen in the image map in Fig. 2 
and in its zoomed-in version in Fig. 5, panel (a). It is beyorid 
the scope of this paper to discuss how the extensive, but care- 
ful, post-processing of the raw data results in the noise in the 
images; the interested reader is referred to 191, [7].  Suffice it 
to say that this background noise can interfere with correctly 
identifying which pixels belong to a galaxy and which are part 
of the background. Since our identification of a galaxy as a bent 
double is dependent on the shape of the galaxy, it is important 
to correctly identify the pixels that form the galaxy. 

In addition to the image maps, FIRST also provides a source 
catalog [lo], obtained by processing an image map to fit two- 
dimensional elliptic Gaussians to each radio source. For exam- 
ple, tlie lower bent-double in Fig. 2 is approximated by more 
than seven Gaussians while the upper one is approximated by 
three Gaussians. Due to an upper limit to the number of Gaus- 
sians that are used to fit each radio source, highly complex 
sources are not approximated well using just the information in 
the catalog. Each entry in the catalog corresponds to the in- 
formation 011 a single Gaussian, including the Right Asceiision 
(RA) and Declination (Dec) for the center of the Gaussian, the 
major and minor axes, the peak flux, the position angle of the 
major axis, etc. 

In our first iteration of the data mining process, we derived 
features from the catalog to characterize the galaxies, built de- 
cisiori trees based on the labeled training set provided by the 
astronomers, and then classified all the galaxies in the catalog 
using the decision trees. The method proved to be successful, 
as we even found a bent-double that was overlooked by the as- 
tronomers in a ~nanual search [ll], [6]. In the second iteration 
of data mining, we used the trees generated in the first iteration 
to enhance our relatively small training set. This resulted in a 
lower classification accnracy. In the third iteration of data min- 
ing, we are using several approaches to improve the accuracy, 
including deriving additioiial features directly from the images. 
This would help 11s a.ddress the concern that some features of 
the galaxies, which are apparent i n  the images, arc lost while 
converting the image data into the catalog. However, before 
identifying the image pixels that form a galaxy, we need to first 
remove the noise from the images. 

111. DE-NOIS~SG TECHNIQI~ES FOR IMAGE DATA 

The problem of de-noising image data can be stated as fol- 
lows: assume that the observed zero-mean data X , J  is a noisy 
version of the signal 

where { t i , J }  is an independent and identically distributed ( i d )  
Gaussian N(O,a')), independent of the signal. Our goal is to 
estimate X i , j  with minimal mean square error (MSE) from the 
realization K,j .  

We considered three different approaches for de-noising the 
FIRST image data. The first approach, based on thresholding 
wa~elet  coefficients, uses the statistical properties of the wavelet 
deconiposition of an image. The second approach, popular in 
the image processing community, uses spatial filters to smooth 
an image. The third method is used by FIRST astronomers to 
generate the catalog from the images. We next describe these 
techniques in more detail. 

A .  De-noising by Thresholding o,f Wavelet Goeficients 

Denoising data using thresholding of wavelet coefficients is 
a subject that has been studied by several researchers in the 
statistics community. Unfortunately, we did not find any work 
that compared and contrasted the different approaches or pro- 
vided practical guidance on the selection of the different options 
that are available in each method. To rectify this, we first con- 
ducted a study of various wavelet de-noising niethods on known 
test images with simulated noise added to them [12]. By com- 
paring the performance of the various de-noisers with respect 
to the original, known, noiseless images, we were able to nar- 
row the options available. The optimal method found in this 
experiment was tlieri applied to the FIRST data. In this sec- 
tion, we provide a brief summary of wavelet de-noisers and our 
experimental results with images containing additive simulated 
noise. 

Wavelet de-noising is one particular way of obtaining tlie es- 
timates R ( i , j )  in Equation (1). If Y, X: and E denote the 
observed data, the noiseless data, and the error matrices in (1); 
respectively, then the three main steps of the process are give11 
as follows: 
Step 1. Calculate the enipirical wavelet coefficient niatxix w 



3 

Image Map 

1150 
pixels 

Catalog 
500K entries 

1 20K image maps, ’7 1 ME3 each 64 pixels 

RA DEC Peak Flux Major Axis M n w  Axis Position Angle 
G %-4oj C ~ T Y  (rmyfbm) (arcsec) (arcsec) (degrees) 

lCEI  

Rndao source 
( R S I  

* 00 5625 -01 1543 25.38 7.39 2.23 37.9 

b 005626 -01 1557 5.50 18.30 14.29 94.2 

005624 -01 16 31 6.44 19.34 10.19 39.8 
______--- 

Fig 2 An exaniple of a FIRST image map with two bent-double galaxies 
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Fig. 3. Wavelet derouiposition subbarids using a tlecimat ed t ransforin 
with two multi-resolution levels. 

by applying a wavelet transform W to  the data: 

w = W Y = W Xi- WE, (2) 

Step 2. Threshold the detail coefficients of w to  obtain the 
estimate w of the wavelet coefficients of X: 

w + i%, (3) 

Step 3. Inverse transforni the thresholded coefficients to ob- 
tain the de-noised estimate: 

j i  = w-1 67. (4) 

The number N of the coefficients w in (2) can vary depending 
on the type of transform used. For our work [12], we used dec- 
imated transforms [13], [2], as they have N = IJ coefficients, 
regardless of the number of multi-resolution levels K used in the 
decomposition. Fig. 3 displays the subbands of a two-level dec- 
imated decomposition. The N wavelet coefficients are grouped 
into subbands according to the K = 2 multi-resolution levels 
and four spatial directions. The directions reflect the order 
of the high-pass (H) and low-pass (L) filtering along the two 
dimensions of the original image. For example, the level one 
coefficients are decomposed into subbands LH1 (vertical detail, 
first level), H L I ,  (horizontal detail, first level), H H I  (diagonal 
detail, first level), arid LL1 (smooth, first level). The smooth 
part is then similarly decomposed into the four subbands cor- 
responding to  the second multi-resolution level. The process 
could be further iterated for additional multi-resolution levels. 

The differences in the wavelet-based de-noising methods lie 
in the details of the three de-noising steps in (2)-(4). First, 
one chooses the wavelet filters, the number of multi-resolution 
levels, and the boundary treatment rule, and obtains the wavelet 
coefficients w in (2). Next, if w denotes a single generic detail 
coefficient, its thresholded version 7B in (3), is obtained through 

tij = & 6x(7./&), (5) 

where SA () denotes the thresholding (shrinkage) function, X the 
threshold, and & an estimate of the noise in (1). 

Note that we suppressed in the notation the possible depen- 
dence of the noise estimate, the threshold, and the thresholding 
function on the multi-resolution level or on the subband. We 
consider three ways in which the threshold values can be calcu- 
lated and applied: 

global: one value for all coefficients 
level-dependent: different values for the coefficients on the 

different levels 
subband-dependent: one value for the coefficients on the dif- 

ferent subbands 
The various de-noising methods in the literature differ in the 

details of the implementation of Equation (5), that is, in select- 
ing the shrinkage function which determines how the threshold 
is applied, estimating the noise, and selecting the shrinkage rule 
to determine the threshold A. In [12], we compared the following 
choices: 

thresholding functions: hard, soft, garrote, and semisoft 
thresholding rules: “universal” [14], “minimizing the false dis- 

covery rate” [15], “top” [2], “hypothesis testing” [3], “SURE” 
[16], and “Bayes” [4] 

We based our noise estimates on wavelet coefficients from dif- 
ferent subbands, and combined them with estimators such as the 
sample standard deviation and the median absolute deviation 
(MAD). 

Based on our experimental results using various test images 
and various levels of additive Gaussian simulated noise, we con- 
cluded that the subband-dependent “SURE” and the “Bayes” 
methods with soft thresholding were superior to  all the other 
methods. Fig. 4 shows a typical result from the comparison 
study. Panel (a) shows the original image, (b) the original im- 
age contaminated by noise with c = 20, (c) the result of the 
best de-noiser, and (d) the result of an inferior de-noiser. Us- 
ing the mean square error (MSE) values with respect to the 
original Iioiseless image, we see that there is a large difference 
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Fig. 4. De-noising results with the Lena image with u = 20, symmletl2 
wavelet, three multi-resolution levels, periodic boundary treatment. 
(a) Original image. (b)  Noisy image, M S E  = 399.50. (r) Subband- 
dependent “SURE” rule with soft thresholding, M S E  = 61.59. (cl)  
Global universal rule with hard shrinkage, M S E  = 103.95. 

between the good and the bad de-noiser. The former reduces 
the MSE of 399.50 of the noisy image to 61.59, while the lat- 
ter results in a noticeably higher value of 103.95. The results 
shown in Fig. 4 are characteristic to  all images and noise lev- 
els we evaluated, and are robust across the wavelet used, the 
number of multi-resolution levels in the decomposition, and the 
boundary treatment rule. A main factor influencing the results 
is the method of noise estimation. We found that using a ro- 
bust estimator, such as the MAD, with the diagonal wavelet 
coefficients from the first level decomposition provided accurate 
noise estimates. 

B. De-noising b y  Spatial Filters 

A common approach to  de-noising images in the image pro- 
cessing community is the use of spatial filters. These approaches 
have been studied extensively [17], [5]. The specific filters we 
have implemented include: 
1. Mean filters 
2. Gaussian filters 
3. Unsharp Masking filters. 
filtered image from the original image. 
4. Scaled Unsharp Masking filters. These filters calculate 

These filters subtract the mean 

(1.0 + a)origin.alLimage - amean- f i l t e*red image  (6) 

where N is a real number. Our experiments indicated that cy = 
-0.8 gave relatively good results for our test images. However, 
this value may vary with the image. 
5 .  Alpha-trimmed mean filters 
6. Median filters 
7. Mid-point filters. The value calculated is the average of the 
niininiiim and maximum with the filter mask. 
8. Minimum mean squared-error filters 
9. Scaled unsharp masking filter followed by a mean filter 
10. Mean filter applied twice 
11. Gaussian filter applied twice 
12. Minimum mean square error filter followed by a mean filter 

13. Minimum mean square error filter followed by a Gaussian 
filter 

Our results with test images with additive simulated noise 
indicated that simple spatial filters were very competitive with 
the wavelet based techniques. For values of = 10, a simple 
Gaussian filter of size 3 worked well, while for higher u values 
the combined minimum mean squared error filter, followed by 
either the mean or the Gaussian filter was the best. 

C. Denoising usinq Simple Thresholdin,g 

In this approach, we borrow an idea from FIRST astronomers 
and use a simple thresholding of the pixels for de-noising. For 
the FIRST data, an estimate of the root mean square (RMS) of 
the noise at each pixel is available as coverage maps for the area 
covered in the survey [8]. In order to generate the catalog from 
the images, FIRST astronomers start by dropping all pixels 
below 5*RMS in value as they consider them to be noise. 

Iv. EXPERIMENTAL RESULTS FOR DE-NOISING FIRST 
IMAGES 

In this section, we compare and contrast the different de- 
noising techniques using a sample image from the FIRST sur- 
vey. Fig. 5 displays a 512 x 512 pixel FIRST image in panel (a). 
The pixels in the original image contain floating-point radio- 
intensity values in Janskys. This is in contrast with standard 
images which have grayscale values in the [0,255] range. Panel 
(b) corresponds to the best de-noiser, as determined in Sec- 
tion 111-A. Panel (c) is the result of the subband-dependent 
“hypothesis testing” shrinkage rule with soft thresholding. This 
is an an inferior result with significant blurring around the radio 
galaxies. Panel (d) shows the result of the “universal” approach 
with hard thresholding. This was an inferior method for our 
test images, but leads to a comparable result for FIRST. The 
previously best SURE method still provides a reasonable out- 
put, as compared with the other wavelet de-noising methods. 
Panels (e) and ( f )  show the zoomed-in detail of panels (c) and 
(d), respectively. Unlike the test cases reported in Section 111-A, 
none of the wavelet de-noising methods we considered de-noised 
the FIRST images sufficiently. The streaks of the original im- 
age remain in the de-noised images and the results of the study 
reported in [12] do not carry over to the FIRST dataset. We be- 
lieve that this is because the assumptions in wavelet de-noising 
are not satisfied by the FIRST observations, i.e. the contami- 
nations are not in the form of additive Gaussian noise. 

It is possible to  tailor the wavelet de-noising to  the FIRST 
data for example, by aggressively de-noising in the diagonal 
direction to perhaps remove more of the “streaks”. Fig. 6 illus- 
trates the effect of such a subband-dependent de-noising. The 
image in panel (a): kept 15% of all detail coefficients at level 
1, 40% of all detail coefficients at level 2, and 80% of all detail 
coefficients a t  level 3. In panel (b), we kept only 1% of the 
detail coefficients in the HH subband on all three levels, while 
keeping the values for the other two subbands (HL and LH) un- 
changed. There is no noticeable visual difference between the 
two images. Killing more diagonal coefficients does not result 
in a superior image, as the streaks in the original image do not 
seem to correspond to more noise in the diagonal direction. 

In comparison, the spatial filters performed better at remov- 
ing the noise from the FIRST images. To reduce the effects 
of blurring, we used a small filter of size 3 x 3. Many of the 
spatial filters were not able to reduce the noise in the images 
sufficiently. However, the unsharp masking filter performed rel- 
atively well as shown in Fig. 7, panel (a). The galaxies are 
clearly visible as the signal in very low noise. Panel (b) is the 



(a) (b) 

Fig 7 (a) (Original - 3 x 3 mean-filtered) difference image (b)  Zoonied- . .  \ ,  

in version of (a) 

Fig. 8.  (a) Image with simple threshold, threshold = 5 * R M S ,  R M S  = 
0.373 (b)  Zoometl-in version of (a).  

zoomed in version, showing the details. A similar result was 
obtained by subtracting the Gaussian filtered image from the 
original image. 

The simple thresholding approach used by FIRST as- 
tronomers also worked very well. Using a threshold of 5 * RMS Fig. 5. De-noising results with a t,ypical FIRST iiiiage with symnilet~l2 

wavelet,, t,hree multi-resolution levels, periodic bouiidary breat.ment. 
(a) FIRST image. (b )  Subband-depeiiclent “SURE” rule with soft 
thresholding. ( c )  Subband-depeiicleiit, “hypot,liesis test.” rule wit,h soft 
threstiotding. (d) Global “universal” rule wit,ti hard thresholdirig. (e) 
Zoomed-in version of ( c ) .  ( f )  Zoomed-in version of (d ) .  

with an RMS 0’373 milliJanskys Obtained for the center Of 

the image from the FIRST coverage map, we obtained the image 
in panel (a) of Fig. 8. Panel (b) shows the zoomed-in version. 

v. CONCLUSIONS A N D  FUTURE WORK 

For the FIRST images, we found that de-noising with 
wavelets did not lead to desired results. While these techniques 
are very effective in images with Gaussian speckle noise such as 
the noise occurring in Synthetic Aperture Radar (SAR) images, 
they did not work well for the FIRST data. In contrast, simpler 
techniques such as unsharp masking or thresholding based on 
domain knowledge worked well. However, wavelets can still be 
exploited in a data mining framework for tasks such as feature 
extraction, image registration, and image compression. 

Our plans for future work in the detection of bent double 
galaxies in the FIRST data set include extracting additional 
features from the images after we have de-noised them using 
the simple thresholding approach. We expect that an enhanced 
feature set will allow us to improve the accuracy of classification. 
We will report on our experiences at the workshop. 
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